

1. March 2024, Faroes Island

Biosecurity and the spread of disease: Sea and land– hand in hand

Agenda

- Infections in fresh water and the hatchery
- Environmental DNA for screening of infections at population level
- Asymptomatic carriers of infection
- Critical points of infection in the production
- Bacteriophages for bio-control of critical points of infection

Infections in fresh water and the hatchery

Introduction of infection in freshwater (hatchery)

Viruses

- ISAV
- IPNV
- HSMI (PRV)
- CMS (PCMV)
- Salmon Gill Pox virus (SGPV)

Bacterias

- Yersinia ruckeri O1 (CC1)
- BKD (Renibacterium salmoninarum)
- Winter ulcer, post smolt brackish water(*Moritella viscosa*)

Environmental – DNA (eDNA)

screening of infections at population level

Veterinærinstituttet

Vite	nsl	kar	bet

KUNNSKAP OM FISKEHELSE I denes spalen vil Veterinærinstitutet i hvert nummer blidra med oppdater kunnskap om fiskehelse. Ansvarig for spalen er forsker Mona Gjessing mona gjessing/evenint.no Norwegian Veterinary Institute

Miljø-DNA sporing av Yersinia ruckeri hos norsk oppdrettslaks

eDNA for screening

- PCR diagnostics on water
- Infection status at population level
- Relevant for most infectious diseases
- Measure of the spread of infectious agents from asymptomatic carriers of disease

Asymptomatic carriers of infection

Veterinærinstituttet

	-		-		
Vi	to	nc	42	n	ot
	LC.	113	٦a	μ	εı

KAP OM FISKEHELSE spalten vil Veterinærinstituttet i hvert nummer ed oppdatert kunnskap om fiskehelse. g for spalten er forsker Mona Gjessing weiner weiter to	Veterinærinstituttet
--	----------------------

Miljø-DNA sporing av Yersinia ruckeri hos norsk oppdrettslaks

l denne bidra m

Ansvar

Asymptomatic carriers of infection

- Infected but clinical healthy fish
- Pathogen below detection limit for PCR (in the host)
- Acute and chronical stress reactivates the pahtogen
 - Stress hormones associated to reactivation
- Outbreaks may occur long after the host is infected

When does an infection become a disease?

Critical points of infection in the production

Critical points of infection

- Operations with crowding, pumping and handling
 - Triggers acute stress in the fish
- No or low infection pressure during regular production
- Crowding: High density/biomass high infection pressure

M

M

• (e.g Sorting in hatcheries or in well boats)

10

eDNA and Yersinia ruckeri

Infection pressure in wellboat during de-licing (Freshwell)

Fig.: Development of infection pressure in wellboat during de-licing

Increased mortality during repeated handlings

- Every handling is a critical point of infection
- Repeated infections increase the risk of outbreaks
- Short recovery time between operations increases the risk of outbreaks

Critical points of infection - from fry to harvest

Bacteriophages:

Biocontrol of critical points of infection

Custus[®]YRS and Custus[®]MVS

- Naturally occuring bakteriophages (viruses) for
 - Yersinia ruckeri O1 (Atlantic salmon)
 - Moritella viscosa CC1
- Removes infection pressure in water
- Protects uninfected fish during stressful operations

Custus[®]YRS controls infection pressure from asymptomatic carriers

Custus[®]YRS removes *Yersinia ruckeri* in the water to levels below detection limits for PCR

Use of Custus[®]YRS at de-licing in well boats

Mo J, Kleppen H P, Frantzen C, Bårdsen E, Støtvig I og Gillund B; «**Bruk av bakteriofagproduktet Custus®YRS til smittepresskontroll og sykdomsforebygging hos atlantisk laks**» Norsk Vet. Tidskr. 3-2023.

17

Moritella viscosa:

A systemic bacterial

infection that <u>can</u> turn

into winter ulcers

Early stages of systemic infection

Our hypothesis:

- Boils / blisters in the skin
- Local inflammation below the skin
- Moritella viscosa CC1 in the boils
 - (mono-culture at plating)
- CC1 and CC3 in head kidney (low levels)
- Winter ulcers starts as a traditional and systemic bacterial infection

Field trial of Custus[®] MVS for *Moritella viscosa* CC1

- Sorting and Custus[®]MVS treatment: 6 days prior to sea transfer
- Start mortalities ~5 days post sea transfer
- Mortalities due to sepsis from Moritella viscosa (no winter ulcers)

Conclusions

- Infection introduced in FW phase can cause disease up to harvest
- Asymptomatic carriers of infection
 - -A hidden risk in the entire value chain
- Spread of infection related to critical points of infection
 - Not continuous infection pressure
- eDNA A new tool for the identification of critical points of infection and prediction of disease
- Bacteriophages (Custus[®]) for control of the infection pressure at critical points of infection

Thank you!